4. dev with dask#
[1]:
from collections import defaultdict
import dask.array as da
import holoviews as hv
import hvplot
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import skimage
import tifffile as tff
from scipy import ndimage
from nima import nima, utils
%load_ext autoreload
%autoreload 2
fp = "../../tests/data/1b_c16_15.tif"
[2]:
daimg = da.from_zarr(tff.imread(fp, aszarr=True))
daimg
[2]:
|
[3]:
utils.bg(daimg[0, 0].compute())
[3]:
(np.float64(457.8380994040984), np.float64(48.50287340564226))
[4]:
def dabg(daimg):
r = defaultdict(list)
n_t, n_c = daimg.shape[:2]
for t in range(n_t):
for c in range(n_c):
r[c].append(utils.bg(daimg[t, c].compute())[0])
return pd.DataFrame(r)
dabg(daimg)
[4]:
0 | 1 | 2 | |
---|---|---|---|
0 | 457.838099 | 257.010244 | 289.378226 |
1 | 457.295254 | 259.072941 | 289.627118 |
2 | 457.760167 | 260.182049 | 290.268666 |
3 | 453.995203 | 257.189940 | 285.613624 |
[5]:
def dabg_fg(daimg, erf_pvalue=1e-100, size=10):
n_t, n_c = daimg.shape[:2]
bgs = defaultdict(list)
fgs = defaultdict(list)
for t in range(n_t):
p = np.ones(daimg.shape[-2:])
multichannel = daimg[t].compute()
for c in range(n_c):
av, sd = utils.bg(multichannel[c])
p = p * utils.prob(multichannel[c], av, sd)
bgs[c].append(av)
mask = ndimage.median_filter((p) ** (1 / n_c), size=size) < erf_pvalue
for c in range(n_c):
fgs[c].append(np.ma.mean(np.ma.masked_array(multichannel[c], mask=~mask)))
return pd.DataFrame(bgs), pd.DataFrame(fgs)
dfb, dff = dabg_fg(daimg)
[6]:
plt.subplot(121)
((dff - dfb)[0] / (dff - dfb)[2]).plot(marker="s")
plt.grid()
plt.subplot(122)
((dff - dfb)[2] / (dff - dfb)[1]).plot(marker="o")
plt.grid()

NEXT:
make utils.bg and utils.prob work with dask arrays
[7]:
def dmask(daim, erf_pvalue=1e-100, size=10):
n_c = daim.shape[0]
im = daim[0].compute()
p = utils.prob(im, *utils.bg(im))
for c in range(1, n_c):
im = daim[c].compute()
p = p * utils.prob(im, *utils.bg(im))
p = ndimage.median_filter((p) ** (1 / n_c), size=size)
mask = p < erf_pvalue
return skimage.morphology.remove_small_objects(mask)
# mask = skimage.morphology.remove_small_holes(mask)
# return np.ma.masked_array(plane, mask=~mask), np.ma.masked_array(plane, mask=mask)
mask = dmask(daimg[2])
lab, nlab = ndimage.label(mask)
lab, nlab
[7]:
(array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], shape=(512, 512), dtype=int32),
2)
[8]:
pr = skimage.measure.regionprops(lab, intensity_image=daimg[0][0])
pr[1].equivalent_diameter
[8]:
np.float64(195.49311541527658)
[9]:
max_diameter = pr[0].equivalent_diameter
size = int(max_diameter * 0.3)
size
[9]:
47
[10]:
t = 0
mask = dmask(daimg[t])
# skimage.io.imshow(mask)
lab, nlab = ndimage.label(mask)
distance = ndimage.distance_transform_edt(mask)
# distance = skimage.filters.gaussian(distance, sigma=0) min_distance=size,
coords = skimage.feature.peak_local_max(
distance, footprint=np.ones((size, size)), labels=lab
)
mm = np.zeros(distance.shape, dtype=bool)
mm[tuple(coords.T)] = True
# markers, _ = ndimage.label(mm)
markers = skimage.measure.label(mm)
labels = skimage.segmentation.watershed(-distance, markers, mask=mask)
_, (ax0, ax1, ax2) = plt.subplots(1, 3)
ax0.imshow(distance)
ax1.imshow(labels)
ax2.imshow(labels == 3)
coords
[10]:
array([[122, 329],
[122, 510],
[475, 125],
[341, 116],
[421, 1]])

[11]:
masks = [dmask(daimg[t]) for t in range(4)]
[12]:
masks = np.stack(masks)
masks.shape
[12]:
(4, 512, 512)
[13]:
tff.imshow(masks)
[13]:
(<Figure size 988.8x604.8 with 3 Axes>,
<Axes: >,
<matplotlib.image.AxesImage at 0x7f8ecc9aa0d0>)

[14]:
distance = ndimage.distance_transform_edt(masks)
distance = skimage.filters.gaussian(distance, sigma=5)
[15]:
import impy
impy.array(distance).imshow()

[15]:
name | No name |
shape | 4(t), 512(y), 512(x) |
label shape | No label |
dtype | float64 |
source | None |
scale | ScaleView(t=1.0000, y=1.0000, x=1.0000) |
[16]:
for t in range(4):
coords = skimage.feature.peak_local_max(distance[t], footprint=np.ones((130, 130)))
print(coords)
[[114 346]
[473 128]
[344 110]]
[[114 346]
[473 128]
[344 110]]
[[114 346]
[473 128]
[344 110]]
[[114 346]
[473 128]
[344 110]]
[17]:
co = np.stack([coords, coords, coords, coords])
[18]:
coords.T
[18]:
array([[114, 473, 344],
[346, 128, 110]])
[19]:
mm = np.zeros(masks[0].shape, dtype=bool)
mm[tuple(co.T)] = True
# markers, _ = ndimage.label(mm)
markers = skimage.measure.label(np.stack([mm, mm, mm, mm]))
labels = skimage.segmentation.watershed(-distance, markers, mask=masks)
_, (ax1, ax2) = plt.subplots(1, 2)
ax1.imshow(labels[3])
ax2.imshow(labels[3] == 4)
[19]:
<matplotlib.image.AxesImage at 0x7f8ecc2c3c50>

[20]:
img = tff.imread(fp)
[21]:
dim, _, _ = nima.read_tiff(fp, channels=["R", "G", "C"])
(4, 512, 512)
[22]:
res = nima.d_bg(dim)
bgs = res[1]
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[22], line 1
----> 1 res = nima.d_bg(dim)
2 bgs = res[1]
TypeError: d_bg() missing 1 required positional argument: 'bg_params'
[23]:
def ratio(t, roi):
g = img[t, 0][labels[t] == roi].mean() - bgs["G"][t]
r = img[t, 1][labels[t] == roi].mean() - bgs["R"][t]
c = img[t, 2][labels[t] == roi].mean() - bgs["C"][t]
return g / c, c / r
ratio(1, 4)
/tmp/ipykernel_2189/533071019.py:2: RuntimeWarning: Mean of empty slice.
g = img[t, 0][labels[t] == roi].mean() - bgs["G"][t]
/home/runner/work/nima/nima/.venv/lib/python3.13/site-packages/numpy/_core/_methods.py:144: RuntimeWarning: invalid value encountered in scalar divide
ret = ret.dtype.type(ret / rcount)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[23], line 8
4 c = img[t, 2][labels[t] == roi].mean() - bgs["C"][t]
5 return g / c, c / r
----> 8 ratio(1, 4)
Cell In[23], line 2, in ratio(t, roi)
1 def ratio(t, roi):
----> 2 g = img[t, 0][labels[t] == roi].mean() - bgs["G"][t]
3 r = img[t, 1][labels[t] == roi].mean() - bgs["R"][t]
4 c = img[t, 2][labels[t] == roi].mean() - bgs["C"][t]
NameError: name 'bgs' is not defined
[24]:
rph = defaultdict(list)
rcl = defaultdict(list)
for roi in range(1, 5):
for t in range(4):
ph, cl = ratio(t, roi)
rph[roi].append(ph)
rcl[roi].append(cl)
plt.plot(rph[1])
plt.plot(rph[2])
plt.plot(rph[3])
plt.plot(rph[4])
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[24], line 5
3 for roi in range(1, 5):
4 for t in range(4):
----> 5 ph, cl = ratio(t, roi)
6 rph[roi].append(ph)
7 rcl[roi].append(cl)
Cell In[23], line 2, in ratio(t, roi)
1 def ratio(t, roi):
----> 2 g = img[t, 0][labels[t] == roi].mean() - bgs["G"][t]
3 r = img[t, 1][labels[t] == roi].mean() - bgs["R"][t]
4 c = img[t, 2][labels[t] == roi].mean() - bgs["C"][t]
NameError: name 'bgs' is not defined
[25]:
plt.plot(rcl[1])
plt.plot(rcl[2])
plt.plot(rcl[3])
plt.plot(rcl[4])
[25]:
[<matplotlib.lines.Line2D at 0x7f8ebfb01810>]

[26]:
t = 2
mask = dmask(daimg[t])
# skimage.io.imshow(mask)
lab, nlab = ndimage.label(mask)
lab[~mask] = -1
# lab[lab==1] = -1
labels_ws = skimage.segmentation.random_walker(
daimg[t, 1].compute(), lab, beta=1e10, mode="bf"
)
# labels_ws = skimage.segmentation.random_walker(-distance, lab, beta=10000, mode="bf")
_, (ax1, ax2) = plt.subplots(1, 2)
ax1.imshow(labels_ws)
ax2.imshow(labels_ws == 2)
/home/runner/work/nima/nima/.venv/lib/python3.13/site-packages/skimage/segmentation/random_walker_segmentation.py:545: UserWarning: Random walker only segments unlabeled areas, where labels == 0. No zero valued areas in labels were found. Returning provided labels.
(labels, nlabels, mask, inds_isolated_seeds, isolated_values) = _preprocess(labels)
[26]:
<matplotlib.image.AxesImage at 0x7f8ebfba1950>

[27]:
imar = impy.imread(fp)
imar.label_threshold()
[27]:
name | 1b_c16_15.tif |
shape | 4(t), 3(c), 512(y), 512(x) |
dtype | uint16 |
source | ../../tests/data/1b_c16_15.tif |
scale | ScaleView(t=1.0000, c=1.0000, y=0.2000, x=0.2000) |
[28]:
imar[:, 2].imshow(label=1)

[28]:
name | 1b_c16_15.tif |
shape | 4(t), 512(y), 512(x) |
label shape | 4(t), 512(y), 512(x) |
dtype | uint16 |
source | ../../tests/data/1b_c16_15.tif |
scale | ScaleView(t=1.0000, y=0.2000, x=0.2000) |
[29]:
def dmask0(im, erf_pvalue=1e-100, size=10):
p = utils.prob(im[0], *utils.bg(im[0]))
for img in im[1:]:
p = p * utils.prob(img, *utils.bg(img))
p = ndimage.median_filter((p) ** (1 / len(im)), size=size)
mask = p < erf_pvalue
return skimage.morphology.remove_small_objects(mask)
[30]:
dmask0(imar[1])
[30]:
array([[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
...,
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False]], shape=(512, 512))
[31]:
plt.imshow(skimage.measure.label(mask))
[31]:
<matplotlib.image.AxesImage at 0x7f8ebe8c4190>

[32]:
distance = skimage.filters.gaussian(distance, sigma=30)
tff.imshow(distance)
[32]:
(<Figure size 988.8x604.8 with 1 Axes>,
<Axes: >,
<matplotlib.image.AxesImage at 0x7f8ebe922210>)

[33]:
np.transpose(np.nonzero(skimage.morphology.local_maxima(distance)))
[33]:
array([[ 3, 110, 353],
[ 3, 346, 107],
[ 3, 456, 18],
[ 3, 486, 128]])
[34]:
tff.imshow(ndimage.label(mask)[0])
[34]:
(<Figure size 988.8x604.8 with 2 Axes>,
<Axes: >,
<matplotlib.image.AxesImage at 0x7f8ebc7a4190>)

[35]:
res[1]
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[35], line 1
----> 1 res[1]
NameError: name 'res' is not defined
[36]:
res[2]["G"][2][0]
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[36], line 1
----> 1 res[2]["G"][2][0]
NameError: name 'res' is not defined
[37]:
res[1].plot()
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[37], line 1
----> 1 res[1].plot()
NameError: name 'res' is not defined
[38]:
import hvplot.pandas
[39]:
res[1].hvplot()
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[39], line 1
----> 1 res[1].hvplot()
NameError: name 'res' is not defined
[40]:
import xarray as xr
[41]:
xim = xr.DataArray(
data=[dim["G"], dim["R"], dim["C"]],
dims=["channel", "time", "y", "x"],
coords={
"channel": ["Green", "Red", "Cyan"],
"time": [0, 1, 2, 3],
"y": range(512),
"x": range(512),
},
)
[42]:
import hvplot.xarray
[43]:
xim.sel(time=0, channel="Green").hvplot(width=400, height=300)
[43]:
[44]:
xim.sel(time=0).hvplot(
width=300,
subplots=True,
by="channel",
)
[44]:
[45]:
hvplot.extension(
"bokeh",
"matplotlib",
)
[46]:
img = xim.sel(time=0).sel(channel="Red")
[47]:
hvimg = hv.Image(img)
[48]:
# %%opts Image [aspect=1388/1038]
f = xim.sel(channel="Red").hvplot(
frame_width=300,
frame_height=200,
subplots=True,
col="time",
yaxis=False,
colorbar=False,
xaxis=False,
cmap="Reds",
) + xim.sel(channel="Cyan").hvplot(
subplots=True, col="time", yaxis=False, colorbar=False, xaxis=False, cmap="Greens"
)
f
[48]:
[49]:
import aicsimageio
aicsimageio.__version__
---------------------------------------------------------------------------
ModuleNotFoundError Traceback (most recent call last)
Cell In[49], line 1
----> 1 import aicsimageio
3 aicsimageio.__version__
ModuleNotFoundError: No module named 'aicsimageio'
[50]:
reader = aicsimageio.readers.tiff_reader.TiffReader
aim1 = aicsimageio.AICSImage(
"/home/dati/dt-evolv/data/2022-06-17/images/Vero-Hek/2022-06-14/13080/TimePoint_1/6w-20Xph1-SpikeTest3_A02_s570_w14510D534-71A3-4EB5-B48F-F4331FE96517.tif",
reader=reader,
)
aim2 = aicsimageio.AICSImage(
"/home/dati/dt-evolv/data/2022-06-17/images/Vero-Hek/2022-06-14/13080/TimePoint_1/6w-20Xph1-SpikeTest3_A02_s570_w25049D5AC-5888-492F-891D-8BECC1AB67DF.tif",
reader=reader,
)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[50], line 1
----> 1 reader = aicsimageio.readers.tiff_reader.TiffReader
2 aim1 = aicsimageio.AICSImage(
3 "/home/dati/dt-evolv/data/2022-06-17/images/Vero-Hek/2022-06-14/13080/TimePoint_1/6w-20Xph1-SpikeTest3_A02_s570_w14510D534-71A3-4EB5-B48F-F4331FE96517.tif",
4 reader=reader,
5 )
6 aim2 = aicsimageio.AICSImage(
7 "/home/dati/dt-evolv/data/2022-06-17/images/Vero-Hek/2022-06-14/13080/TimePoint_1/6w-20Xph1-SpikeTest3_A02_s570_w25049D5AC-5888-492F-891D-8BECC1AB67DF.tif",
8 reader=reader,
9 )
NameError: name 'aicsimageio' is not defined
[51]:
x1 = aim1.xarray_data
x2 = aim2.xarray_data
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[51], line 1
----> 1 x1 = aim1.xarray_data
2 x2 = aim2.xarray_data
NameError: name 'aim1' is not defined
[52]:
# Create a new Dataset with new coordinates
ds = xr.Dataset({"c1": x1, "c2": x2})
# Assuming ds is your Dataset
new_coords = {"Frame": [1, 2], "excitation_wavelength": [400, 500]}
# Use assign_coords to set new coordinates
ds_assigned = ds.assign_coords(**new_coords)
ds_assigned
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[52], line 2
1 # Create a new Dataset with new coordinates
----> 2 ds = xr.Dataset({"c1": x1, "c2": x2})
4 # Assuming ds is your Dataset
5 new_coords = {"Frame": [1, 2], "excitation_wavelength": [400, 500]}
NameError: name 'x1' is not defined
[53]:
aim2.metadata[220:230] == aim1.metadata[220:230]
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[53], line 1
----> 1 aim2.metadata[220:230] == aim1.metadata[220:230]
NameError: name 'aim2' is not defined
[54]:
im = x1.to_numpy()[0, 0, 0]
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[54], line 1
----> 1 im = x1.to_numpy()[0, 0, 0]
NameError: name 'x1' is not defined
[55]:
im1 = tff.imread("/home/dati/dt-evolv/data/2022-06-17/flat_w1.tif")
im2 = tff.imread("/home/dati/dt-evolv/data/2022-06-17/flat_w2.tif")
---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
/tmp/ipykernel_2189/2721790190.py in ?()
----> 1 im1 = tff.imread("/home/dati/dt-evolv/data/2022-06-17/flat_w1.tif")
2 im2 = tff.imread("/home/dati/dt-evolv/data/2022-06-17/flat_w2.tif")
~/work/nima/nima/.venv/lib/python3.13/site-packages/tifffile/tifffile.py in ?(files, selection, aszarr, key, series, level, squeeze, maxworkers, buffersize, mode, name, offset, size, pattern, axesorder, categories, imread, imreadargs, sort, container, chunkshape, chunkdtype, axestiled, ioworkers, chunkmode, fillvalue, zattrs, multiscales, omexml, out, out_inplace, _multifile, _useframes, **kwargs)
1158 ):
1159 files = files[0]
1160
1161 if isinstance(files, str) or not isinstance(files, Sequence):
-> 1162 with TiffFile(
1163 files,
1164 mode=mode,
1165 name=name,
~/work/nima/nima/.venv/lib/python3.13/site-packages/tifffile/tifffile.py in ?(self, file, mode, name, offset, size, omexml, _multifile, _useframes, _parent, **is_flags)
4240 raise ValueError('invalid OME-XML')
4241 self._omexml = omexml
4242 self.is_ome = True
4243
-> 4244 fh = FileHandle(file, mode=mode, name=name, offset=offset, size=size)
4245 self._fh = fh
4246 self._multifile = True if _multifile is None else bool(_multifile)
4247 self._files = {fh.name: self}
~/work/nima/nima/.venv/lib/python3.13/site-packages/tifffile/tifffile.py in ?(self, file, mode, name, offset, size)
13350 self._offset = -1 if offset is None else offset
13351 self._size = -1 if size is None else size
13352 self._close = True
13353 self._lock = NullContext()
> 13354 self.open()
13355 assert self._fh is not None
~/work/nima/nima/.venv/lib/python3.13/site-packages/tifffile/tifffile.py in ?(self)
13369 if self._mode not in {'rb', 'r+b', 'wb', 'xb'}:
13370 raise ValueError(f'invalid mode {self._mode}')
13371 self._file = os.path.realpath(self._file)
13372 self._dir, self._name = os.path.split(self._file)
> 13373 self._fh = open(self._file, self._mode, encoding=None)
13374 self._close = True
13375 self._offset = max(0, self._offset)
13376 elif isinstance(self._file, FileHandle):
FileNotFoundError: [Errno 2] No such file or directory: '/home/dati/dt-evolv/data/2022-06-17/flat_w1.tif'
[56]:
%%opts Image [aspect=1388/1038]
%%opts Image.Cyan style(cmap=plt.cm.Blues)
%%opts Image.Green style(cmap=plt.cm.Greens)
%%opts Image.Red style(cmap=plt.cm.Reds)
/tmp/ipykernel_2189/1736577656.py:1: HoloviewsDeprecationWarning: IPython magic is deprecated and will be removed in version 1.23.0.
get_ipython().run_cell_magic('opts', 'Image [aspect=1388/1038]', '\n%%opts Image.Cyan style(cmap=plt.cm.Blues)\n%%opts Image.Green style(cmap=plt.cm.Greens)\n%%opts Image.Red style(cmap=plt.cm.Reds)\n')
[57]:
chans = (
hv.Image(dim["C"][0], group="cyan")
+ hv.Image(dim["G"][2], group="green")
+ hv.Image(dim["R"][1], group="red")
)
chans
[57]:
[58]:
hv.save(chans, "a.png")
5. Holoviews#
[59]:
hv.notebook_extension()
cm = plt.cm.inferno_r
channels = ["G", "R", "C"]
dim, n_ch, times = nima.read_tiff(fp, channels)
dimm = nima.d_median(dim)
f = nima.d_show(dimm, cmap=cm)
/tmp/ipykernel_2189/1764924339.py:1: HoloviewsDeprecationWarning: Calling 'hv.extension()' without arguments is deprecated and will be removed in version 1.23.0, use 'hv.extension("matplotlib")' instead.
hv.notebook_extension()
(4, 512, 512)
[60]:
%%opts Image [aspect=512/512]
%%opts Image.Cyan style(cmap=plt.cm.Blues)
%%opts Image.Green style(cmap=plt.cm.Greens)
%%opts Image.Red style(cmap=plt.cm.Reds)
chans = hv.Image(dim['C'][0], group='cyan') \
+ hv.Image(dim['G'][0], group='green') \
+ hv.Image(dim['R'][0], group='red')
chans
/tmp/ipykernel_2189/3523771648.py:1: HoloviewsDeprecationWarning: IPython magic is deprecated and will be removed in version 1.23.0.
get_ipython().run_cell_magic('opts', 'Image [aspect=512/512]', "\n%%opts Image.Cyan style(cmap=plt.cm.Blues)\n%%opts Image.Green style(cmap=plt.cm.Greens)\n%%opts Image.Red style(cmap=plt.cm.Reds)\n\nchans = hv.Image(dim['C'][0], group='cyan') \\\n + hv.Image(dim['G'][0], group='green') \\\n + hv.Image(dim['R'][0], group='red')\n\nchans\n")
[60]:
[61]:
c = [(i, hv.Image(im)) for i, im in enumerate(dim["C"])]
c = hv.HoloMap(c, kdims=["Frame"])
g = [(i, hv.Image(im)) for i, im in enumerate(dim["G"])]
g = hv.HoloMap(g, kdims=["Frame"])
r = [(i, hv.Image(im)) for i, im in enumerate(dim["R"])]
r = hv.HoloMap(r, kdims=["Frame"])
[62]:
%%output holomap='auto'
%%opts Image style(cmap='viridis')
(c + g).select(Frame={0,5,6,7,10,30}).cols(2)
/tmp/ipykernel_2189/3640934118.py:1: HoloviewsDeprecationWarning: IPython magic is deprecated and will be removed in version 1.23.0.
get_ipython().run_cell_magic('output', "holomap='auto'", "%%opts Image style(cmap='viridis')\n(c + g).select(Frame={0,5,6,7,10,30}).cols(2)\n")
/tmp/ipykernel_2189/1261574846.py:1: HoloviewsDeprecationWarning: IPython magic is deprecated and will be removed in version 1.23.0.
get_ipython().run_cell_magic('opts', "Image style(cmap='viridis')", '(c + g).select(Frame={0,5,6,7,10,30}).cols(2)\n')
[62]:
[63]:
c[::20].overlay("Frame")
[63]:
[64]:
wl = hv.Dimension("excitation wavelength", unit="nm")
c = c.add_dimension(wl, 1, 458)
g = g.add_dimension(wl, 1, 488)
r = r.add_dimension(wl, 1, 561)
channels = c.clone()
channels.update(g)
channels.update(r)
[65]:
%%opts Image style(cmap='viridis')
%%output size=300
channels[::5].grid(['Frame', 'excitation wavelength'])
/tmp/ipykernel_2189/2279777199.py:1: HoloviewsDeprecationWarning: IPython magic is deprecated and will be removed in version 1.23.0.
get_ipython().run_cell_magic('opts', "Image style(cmap='viridis')", "%%output size=300\nchannels[::5].grid(['Frame', 'excitation wavelength'])\n")
/tmp/ipykernel_2189/3322840880.py:1: HoloviewsDeprecationWarning: IPython magic is deprecated and will be removed in version 1.23.0.
get_ipython().run_cell_magic('output', 'size=300', "channels[::5].grid(['Frame', 'excitation wavelength'])\n")
[65]:
[66]:
t = [(i, hv.Image(im)) for i, im in enumerate(dim["C"])]
[67]:
hv.HoloMap([(i, hv.Image(im)) for i, im in enumerate(dim["C"])], kdims=["frame"])
[67]:
[68]:
hv.NdLayout(
{
k: hv.HoloMap(
[(i, hv.Image(im)) for i, im in enumerate(dim[k])], kdims=["frame"]
)
for k in dim
},
kdims=["channels"],
)[::4]
[68]:
[69]:
%%opts Image (cmap='viridis')
%%opts Image.A [aspect=2]
im = hv.Image(dim["G"][1], bounds=(0, 0, 512, 512))
im2 = hv.Image(dim['C'][1], bounds=(0, 0, 512, 512))
im3 = hv.Image(dimm['C'][1], bounds=(0, 0, 512, 512))
((im * hv.HLine(y=350)) + im.sample(y=350) + (im2 * hv.HLine(y=150)) + im2.sample(y=150) * im3.sample(y=150)).cols(3)
/tmp/ipykernel_2189/4117421567.py:1: HoloviewsDeprecationWarning: IPython magic is deprecated and will be removed in version 1.23.0.
get_ipython().run_cell_magic('opts', "Image (cmap='viridis')", '%%opts Image.A [aspect=2]\nim = hv.Image(dim["G"][1], bounds=(0, 0, 512, 512))\nim2 = hv.Image(dim[\'C\'][1], bounds=(0, 0, 512, 512))\nim3 = hv.Image(dimm[\'C\'][1], bounds=(0, 0, 512, 512))\n((im * hv.HLine(y=350)) + im.sample(y=350) + (im2 * hv.HLine(y=150)) + im2.sample(y=150) * im3.sample(y=150)).cols(3)\n')
[69]: